ON HYDRODYNAMIC PHENOMENA ACCOMPANYING
MELTING IN A PARTICULAR CASE

Yu. K, Bratukhin and L. N. Maurin UDC 536.421

The problem of melting ice filling a lower half-space, under the effect of a heavy heated cylin-
der of sufficiently large radius is considered. An analytic solution is obtained for a linear
formulation of the nonstationary problem of motion of the fluid being formed because of melt-
ing of the solid phase.

A hot normal cylinder is placed on ice. Under the cylinder the ice thaws and a liquid layer is formed
between the cylinder whose temperature is kept constant equal to T and the ice, and its spreads to the side
under the effect of the cylinder weight. It is assumed that the thickness of the liguid layer h is much less
than the cylinder radius rj, which permits neglecting edge effects.

Let us introduce a cylindrieal r,” ¢, z coordinate system by directing the z axis upward opposite to
the acceleration of gravity g = gy and superposing the x = 0 plane on the horizontal ice surface and the lower
base of the heated cylinder at the initial instant. With respect to the laboratory reference system connected
to the fixed mass of ice, the selected coordinate system moves downward at a velocity v, equal to the steady
velocity of the cylinder so that the ice surface corresponds to the coordinate zy(t), and the lower cylinder
surface to —zy(t) + h(t), where z; and the thickness of the fluid layer h are functions of the time t.

The system of equations, boundary, initial, and integral conditions corresponding to the formulated
problem is: :
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So

The boundary conditions (2) on the moving ice surface zy(t) take account of the adhesion condition (vr = 0),
the constancy of the solid phase temperature at the melting point (T = 0), and the velocity of the coordinate
system (v, = vo) with respect to the ice at rest in the laboratory reference system.

The adhesion condition, (vy = 0), the sustained cylinder temperature (T = T,), and the impermeabil-
ity of the boundary for the fluid (the fluid velocity v, on the boundary equals the boundary velocity Zy + h)
are given analogously on the lower cylinder surface zy(t) + h(t).

Zero external pressure is given on the cylinder edge.
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The initial conditions (3) are homogeneous, there is no gap up to the time the hot body makes contact
with the ice, and the origin is at the ice surface.

Equation (4) is the integral condition of conservation of fluid momentum in a cylindrical volume of
arbitrary radius r.

The last integral condition (5) is the law of cylinder motion under the effect of gravity and a pressure
force applied to its lower surface Sy = 7r3.

Let us examine the axially symmetric solution of the boundary value problem (1)-(5). It then follows
from (4) and the continuity equation that
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where the prime over the letter will denote, here and henceforth, the derivative with respect to the coordi-
nate z. In this case, the integral equation (4) is satisfied identically by virtue of the boundary conditions (2)
and, hence will no longer be written down. The same holds for the continuity equation.

Let us go over the dimensionless quantities by selecting v /vy as the unit of length, v, for velocity,
v /v, for time, T, for temperature, and pv3/2 for pressure. Denoting the variables by the previous letters
and keeping (6) in mind, we obtain
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Here we have introduced the dimensionless parameters
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and the dimensionless cylinder radius R = ryvy/v.

Under the assumption of slowness of the motion ((vV)v< Av) and smallness of the numbers G and P,
and after eliminating the pressure from the Navier—Stokes equations, the boundary value problem (7) is
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The temperature is linear:
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Let us seek the solution of the boundary value problem (8) in the form of the series
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where £ = exp (—At). The equations
qo T—A‘ aO “}_ b[)z + C()22 + dozli,
. o (11)
Gp == 0, + Dz cosk,z 4 d, sink,z, n£0, k,=ynk,

are obtained for g, (z). To determine the pressure p in the boundary conditions of problem (8), let us
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mtegrate the projection of the Navxer—Sto_ke_s _gquatlon on the axis r with respect to r and let us satisfy the
conditionp=0onr=R .
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where g(z, t) is taken from (10).

Let us substitute (10)-(12) into the boundary and integral conditions of the system of equations (8) and
let us collect terms with £°, After simple manipulations, equations are obtained to determine a,, by, cqand
dg, as well as the steady thickness of the liquid layer and the rate of cylinder drop:
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The By in (14) equals the steady dimensionless layer thickness written in dimensional form in {13). The
distance A, which theice—water interface traverses up to the build-up of the stationary mode is found in the
next approximation in £, Iet us derive the equations for this approximation
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Assuming that we limit ourselves to a linear approximation in &, let us append initial conditions, truncated
at the second term
A+ Ay =0, B,+B;=0, (16)

to this system of equations.

Hence, A, and By are at once expressed successfully in terms of A; and By, which in turn permits
estimation of A, by using the last equation in the system (15)

Ay=—A4, B=—B, A= —k".

The restriction to a term linear in £ = exp(—At) in the expansions (10) means, physically, the assumption
of sufficiently large decrements A = ki, It is easy to see that By should also be on the order of ki? so that
we can set By = a/k?, where ¢ is a new unknown on the order of one.

To determine the remaining five unknowns a4, by, ci, d; and a there are the five first equations in the
system (15). Because of the complexity of the system it is expedient to use the smallness of A, and By and
to set
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In this approximation « is found easily and turns out to equal 3 approximately. This permits finding the
"build-up time" of the stationary mode 1/A = ky 2 as well as the distance traversed by the cylinder during
this time: .
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(according to the coefficient Bj already found (see (14)).
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NOTATION

T is the temperature;

v is the velocity;

p is the pressure;

t is the time;

D is the density;

v is the coefficient of kinematic viscosity;
B

X is the temperature conductivity;
" is the heat conductivity;
is the coefficient of volume expansion;
L is the specific heat of fusion;
r, ¢ and z are the cylindrical coordinates;
h is the thickness of fluid layer;
S is the surface area;
g=gvy is the acceleration of gravity;
mg is the cylinder weight;
G, Q, M, N, PandR are the dimensionless parameters of the problem.
Subscripts

Differentiation with respect to time is noted by adot,and with respect to the coordinate ¢ by a prime.



